Copied to
clipboard

G = C42.166D6order 192 = 26·3

166th non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.166D6, C6.752+ 1+4, C4:1D4.8S3, (C4xDic6):50C2, (D4xDic3):33C2, (C2xD4).114D6, (C2xC6).257C24, C12.133(C4oD4), C2.79(D4:6D6), C4.17(D4:2S3), C23.12D6:25C2, (C2xC12).634C23, (C4xC12).202C22, (C6xD4).160C22, (C22xC6).71C23, C23.73(C22xS3), C23.23D6:26C2, C4:Dic3.380C22, C22.278(S3xC23), Dic3:C4.163C22, C3:5(C22.53C24), (C4xDic3).154C22, (C2xDic3).133C23, (C2xDic6).300C22, C6.D4.71C22, (C22xDic3).156C22, C6.95(C2xC4oD4), (C3xC4:1D4).6C2, C2.59(C2xD4:2S3), (C2xC4).595(C22xS3), SmallGroup(192,1272)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C42.166D6
C1C3C6C2xC6C2xDic3C22xDic3D4xDic3 — C42.166D6
C3C2xC6 — C42.166D6
C1C22C4:1D4

Generators and relations for C42.166D6
 G = < a,b,c,d | a4=b4=c6=1, d2=b2, ab=ba, cac-1=dad-1=a-1, cbc-1=b-1, dbd-1=a2b, dcd-1=c-1 >

Subgroups: 544 in 236 conjugacy classes, 99 normal (13 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C6, C6, C6, C2xC4, C2xC4, C2xC4, D4, Q8, C23, Dic3, C12, C12, C2xC6, C2xC6, C42, C42, C22:C4, C4:C4, C22xC4, C2xD4, C2xQ8, Dic6, C2xDic3, C2xDic3, C2xC12, C2xC12, C3xD4, C22xC6, C4xD4, C4xQ8, C22.D4, C4.4D4, C4:1D4, C4xDic3, Dic3:C4, C4:Dic3, C6.D4, C4xC12, C2xDic6, C22xDic3, C6xD4, C22.53C24, C4xDic6, D4xDic3, C23.23D6, C23.12D6, C3xC4:1D4, C42.166D6
Quotients: C1, C2, C22, S3, C23, D6, C4oD4, C24, C22xS3, C2xC4oD4, 2+ 1+4, D4:2S3, S3xC23, C22.53C24, C2xD4:2S3, D4:6D6, C42.166D6

Smallest permutation representation of C42.166D6
On 96 points
Generators in S96
(1 18 15 4)(2 5 16 13)(3 14 17 6)(7 43 34 54)(8 49 35 44)(9 45 36 50)(10 51 31 46)(11 47 32 52)(12 53 33 48)(19 42 39 22)(20 23 40 37)(21 38 41 24)(25 78 95 58)(26 59 96 73)(27 74 91 60)(28 55 92 75)(29 76 93 56)(30 57 94 77)(61 64 80 83)(62 84 81 65)(63 66 82 79)(67 70 86 89)(68 90 87 71)(69 72 88 85)
(1 43 37 10)(2 11 38 44)(3 45 39 12)(4 7 40 46)(5 47 41 8)(6 9 42 48)(13 52 21 35)(14 36 22 53)(15 54 23 31)(16 32 24 49)(17 50 19 33)(18 34 20 51)(25 83 55 89)(26 90 56 84)(27 79 57 85)(28 86 58 80)(29 81 59 87)(30 88 60 82)(61 92 67 78)(62 73 68 93)(63 94 69 74)(64 75 70 95)(65 96 71 76)(66 77 72 91)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)
(1 88 37 82)(2 87 38 81)(3 86 39 80)(4 85 40 79)(5 90 41 84)(6 89 42 83)(7 91 46 77)(8 96 47 76)(9 95 48 75)(10 94 43 74)(11 93 44 73)(12 92 45 78)(13 71 21 65)(14 70 22 64)(15 69 23 63)(16 68 24 62)(17 67 19 61)(18 72 20 66)(25 53 55 36)(26 52 56 35)(27 51 57 34)(28 50 58 33)(29 49 59 32)(30 54 60 31)

G:=sub<Sym(96)| (1,18,15,4)(2,5,16,13)(3,14,17,6)(7,43,34,54)(8,49,35,44)(9,45,36,50)(10,51,31,46)(11,47,32,52)(12,53,33,48)(19,42,39,22)(20,23,40,37)(21,38,41,24)(25,78,95,58)(26,59,96,73)(27,74,91,60)(28,55,92,75)(29,76,93,56)(30,57,94,77)(61,64,80,83)(62,84,81,65)(63,66,82,79)(67,70,86,89)(68,90,87,71)(69,72,88,85), (1,43,37,10)(2,11,38,44)(3,45,39,12)(4,7,40,46)(5,47,41,8)(6,9,42,48)(13,52,21,35)(14,36,22,53)(15,54,23,31)(16,32,24,49)(17,50,19,33)(18,34,20,51)(25,83,55,89)(26,90,56,84)(27,79,57,85)(28,86,58,80)(29,81,59,87)(30,88,60,82)(61,92,67,78)(62,73,68,93)(63,94,69,74)(64,75,70,95)(65,96,71,76)(66,77,72,91), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,88,37,82)(2,87,38,81)(3,86,39,80)(4,85,40,79)(5,90,41,84)(6,89,42,83)(7,91,46,77)(8,96,47,76)(9,95,48,75)(10,94,43,74)(11,93,44,73)(12,92,45,78)(13,71,21,65)(14,70,22,64)(15,69,23,63)(16,68,24,62)(17,67,19,61)(18,72,20,66)(25,53,55,36)(26,52,56,35)(27,51,57,34)(28,50,58,33)(29,49,59,32)(30,54,60,31)>;

G:=Group( (1,18,15,4)(2,5,16,13)(3,14,17,6)(7,43,34,54)(8,49,35,44)(9,45,36,50)(10,51,31,46)(11,47,32,52)(12,53,33,48)(19,42,39,22)(20,23,40,37)(21,38,41,24)(25,78,95,58)(26,59,96,73)(27,74,91,60)(28,55,92,75)(29,76,93,56)(30,57,94,77)(61,64,80,83)(62,84,81,65)(63,66,82,79)(67,70,86,89)(68,90,87,71)(69,72,88,85), (1,43,37,10)(2,11,38,44)(3,45,39,12)(4,7,40,46)(5,47,41,8)(6,9,42,48)(13,52,21,35)(14,36,22,53)(15,54,23,31)(16,32,24,49)(17,50,19,33)(18,34,20,51)(25,83,55,89)(26,90,56,84)(27,79,57,85)(28,86,58,80)(29,81,59,87)(30,88,60,82)(61,92,67,78)(62,73,68,93)(63,94,69,74)(64,75,70,95)(65,96,71,76)(66,77,72,91), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,88,37,82)(2,87,38,81)(3,86,39,80)(4,85,40,79)(5,90,41,84)(6,89,42,83)(7,91,46,77)(8,96,47,76)(9,95,48,75)(10,94,43,74)(11,93,44,73)(12,92,45,78)(13,71,21,65)(14,70,22,64)(15,69,23,63)(16,68,24,62)(17,67,19,61)(18,72,20,66)(25,53,55,36)(26,52,56,35)(27,51,57,34)(28,50,58,33)(29,49,59,32)(30,54,60,31) );

G=PermutationGroup([[(1,18,15,4),(2,5,16,13),(3,14,17,6),(7,43,34,54),(8,49,35,44),(9,45,36,50),(10,51,31,46),(11,47,32,52),(12,53,33,48),(19,42,39,22),(20,23,40,37),(21,38,41,24),(25,78,95,58),(26,59,96,73),(27,74,91,60),(28,55,92,75),(29,76,93,56),(30,57,94,77),(61,64,80,83),(62,84,81,65),(63,66,82,79),(67,70,86,89),(68,90,87,71),(69,72,88,85)], [(1,43,37,10),(2,11,38,44),(3,45,39,12),(4,7,40,46),(5,47,41,8),(6,9,42,48),(13,52,21,35),(14,36,22,53),(15,54,23,31),(16,32,24,49),(17,50,19,33),(18,34,20,51),(25,83,55,89),(26,90,56,84),(27,79,57,85),(28,86,58,80),(29,81,59,87),(30,88,60,82),(61,92,67,78),(62,73,68,93),(63,94,69,74),(64,75,70,95),(65,96,71,76),(66,77,72,91)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96)], [(1,88,37,82),(2,87,38,81),(3,86,39,80),(4,85,40,79),(5,90,41,84),(6,89,42,83),(7,91,46,77),(8,96,47,76),(9,95,48,75),(10,94,43,74),(11,93,44,73),(12,92,45,78),(13,71,21,65),(14,70,22,64),(15,69,23,63),(16,68,24,62),(17,67,19,61),(18,72,20,66),(25,53,55,36),(26,52,56,35),(27,51,57,34),(28,50,58,33),(29,49,59,32),(30,54,60,31)]])

39 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F···4M4N4O4P4Q6A6B6C6D6E6F6G12A···12F
order122222223444444···44444666666612···12
size111144442222246···61212121222288884···4

39 irreducible representations

dim1111112222444
type++++++++++-
imageC1C2C2C2C2C2S3D6D6C4oD42+ 1+4D4:2S3D4:6D6
kernelC42.166D6C4xDic6D4xDic3C23.23D6C23.12D6C3xC4:1D4C4:1D4C42C2xD4C12C6C4C2
# reps1244411168142

Matrix representation of C42.166D6 in GL6(F13)

1210000
1110000
0012000
0001200
000010
000001
,
1210000
1110000
000100
0012000
0000120
0000012
,
1210000
010000
0012000
000100
0000012
0000112
,
850000
050000
008000
000800
000010
0000112

G:=sub<GL(6,GF(13))| [12,11,0,0,0,0,1,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,11,0,0,0,0,1,1,0,0,0,0,0,0,0,12,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[12,0,0,0,0,0,1,1,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[8,0,0,0,0,0,5,5,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0,0,0,0,0,0,1,1,0,0,0,0,0,12] >;

C42.166D6 in GAP, Magma, Sage, TeX

C_4^2._{166}D_6
% in TeX

G:=Group("C4^2.166D6");
// GroupNames label

G:=SmallGroup(192,1272);
// by ID

G=gap.SmallGroup(192,1272);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,219,1571,570,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^6=1,d^2=b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,c*b*c^-1=b^-1,d*b*d^-1=a^2*b,d*c*d^-1=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<